Analysing Cross-Country Protest Dynamics: A Transformer-based Approach to Newspaper Content

<u>Giuliano Formisano</u> (University of Oxford), <u>Caterina Froio</u> (SciencesPo, Paris), <u>Pietro Castelli Gattinara</u> (SciencesPo, Université Libre de Bruxelles)

EPSA Conference 2024

COM MARIA GRAZIA CUCINOTTA

page a GAETANO DANIELE per transmissioner für CCC/net "per Connegation. Ywn Ywn, we capacitation bis how ange as the balls how have a final and a connegation of the connegative of the connegative

What do newspaper articles about "il postino" and far-right protests have in common?

Motivation

- The evolving nature of collective action and abundant digital text prompt researchers to develop new tools to study its complexities.
- Limiting time, costs and increasing replicability of protest event analysis (Hutter 2014a, 2014b; Lorenzini et al., 2022, Nardulli 2015; Zhang and Pan 2019).
- Previous models present some weaknesses:
 - Protest event selection bias: struggle generalise to unseen texts.
 - Bag-of-words-based approaches ignoring word semantics and order leading to information loss and data sparsity issues.
 - Previous Transformer approaches limited in language and tasks.

Research question & goals

- **Research question:** How LLMs can enhance the efficiency and accuracy of cross-country protest event analysis?
- Two key objectives:
- 1. To identify articles discussing protest events beyond mentioning keywords.
- 2. To annotate nuanced characteristics of protest events: issue (i.e., religious and ethnic minorities vs others) and protest form (i.e., demonstrative vs violent).

Data

- **FARPO dataset:** <u>4,002 manually annotated protest events</u> described in newspaper articles in Austria, Belgium-Wallonia, France, the Netherlands, Germany, Sweden, and Spain (https://farpo.eu/).
- **Time window:** 2008-2018 (focus: economic and cultural impact of the 2008 global financial crisis and 2015 EU migration policy crisis).
- **Sampling:** Actor-centered keyword search on Factiva and Lexis-Nexis (Berkhout et al. 2015).
- <u>Appendices 1 and 2</u> contain a data summary by task and country.

Annotations

- Coders: 6 coders speaking at least one of the languages under analysis.
- Intercoder reliability tests: To check consistency and description biases
 Cronbach's alphas, finding high levels of reliability, averaging 0.97.
- **Protest identification:** Annotation for relevance, distinguishing articles discussing actual protest events from those merely mentioning keywords.
- **Protest characteristics:** The dataset is annotated for event characteristics: (1) ethnic/religion minorities and (2) violence.

Methods

- We train **3 multilingual supervised machine learning classifiers** on three tasks (protest identification, issue, and forms of action).
- Models: XLM-roBERTa (2020) and mBERT (2019).
- **Splits (training, validation, test)**: 60/20/20%, 70/15/15%, and 80/10/10%.
- Seed: Randomly selected seeds to split human-coded texts into sets, and in the sequence classification work.
- **Evaluation metrics:** Accuracy, Fscore, AUC.
- **Robustness**: Parameters' freezing and zero-rule baseline.

Results

Table 1: Descriptive statistics of best performing algorithms on the testing sets

Task	Model	Seed	Split	Accuracy	Average F-score	Individual F-scores	AUC
Protest Identification		373	80% training 10% validation 10% testing	80%	80%	78% vs 81%	0.80
Protest Issue	XLM roBERTa	387	70% training 15% validation 15% testing	75%	75%	72% vs 77%	0.75
Protest Action Form		973	70% training 15% validation 15% testing	75%	75%	78% vs 71%	0.77

Note: The table shows the descriptive statistics of the best performing algorithms on the testing sets for each task under analysis. We present the random seed and split used. We also provide four performance metrics: Accuracy, Average F-score, Individual F-scores for each class in the model, and Area-under-the-curve (AUC). <u>Appendices</u> contain descriptive analyses of each classifier using all configurations (model, seed, split, and metrics).

Conclusions

- Integrating machine learning models (LLMs) into protest event analysis enhances efficiency and accuracy while addressing time and cost constraints.
- Training classifiers to identify articles discussing protest events beyond keyword mentions improves dataset precision.
- Using additional classifiers allows annotation of nuanced protest event characteristics, enhancing analysis depth: (1) ethnic/religious minorities involvement, (2) demonstrative vs violent protests.
- Increased portability: our models can be applied to other languages (e.g., English and Italian) and several types of texts (e.g., tweets, press releases).

Thank you very much!

Appendix 1: Data Summary by Task and Country

Task 1: Data summary					
Country	Texts				
Germany	1,930				
France	599				
Spain	471				
Sweden	394				
Netherlands	260				
Austria	190				
Belgium	158				
Total	4,002				

Task 2a: Data summary					
Country	Texts				
Germany	913				
France	294				
Spain	225				
Sweden	185				
Netherlands	128				
Austria	91				
Belgium	77				
Total	2,546				

Task 2b: Data summary				
Country	Texts			
Germany	1,019			
Spain	686			
France	308			
Sweden	216			
Netherlands	132			
Austria	98			
Belgium	82			
Total	1,911			

Appendix 2: Average Texts Lengths by Country

Task 1:					
Average text lengths					
Country	Texts				
Germany	665				
France	835				
Spain	612				
Sweden	704				
Netherlands	986				
Austria	424				
Belgium	423				
Overall	688				

Task 2a:					
Average text lengths					
Country	Texts				
Germany	572				
France	903				
Spain	501				
Sweden	756				
Netherlands	904				
Austria	389				
Belgium	472				
Overall	642				

Task 2b:					
Average text lengths					
Country	Texts				
Germany	581				
Spain	226				
France	903				
Sweden	820				
Netherlands	901				
Austria	396				
Belgium	488				
Overall	511				

Appendix 3 - Task 1: Protest Event Identification

Binary classification to identify articles explicitly discussing relevant protest events.

Labels distribution:

- Non-protest: 2,092 texts
- Protest: 1,910 texts

Speed [using top classifier]: 401 texts coded in 2min49sec (2.37it/s)

Model	Seed	Split	Accuracy	Average F-score	Individual F-scores	AUC
	449	60% training 20% validation	78%	77%	75% vs 80%	0.77
	257		76%	76%	77% vs 75%	0.76
	861	20% testing	74%	74%	72% vs 76%	0.74
XLM	385	70% training	78%	78%	76% vs 80%	0.79
roBERTa	206	15% validation	73%	72%	70% vs 75%	0.75
	920	15% testing	76%	76%	77% vs 75%	0.76
	102	80% training	73%	73%	72% vs 74%	0.73
	835	10% validation	79%	79%	79% vs 79%	0.79
	373	10% testing	80%	80%	78% vs 81%	0.80
	493	60% training 20% validation 20% testing	77%	77%	77% vs 77%	0.78
	89		75%	75%	78% vs 72%	0.75
	759		74%	74%	73% vs 75%	0.74
	501	70% training 15% validation 15% testing	76%	76%	78% vs 72%	0.75
mBERT	895		76%	75%	73% vs 78%	0.76
	946		80%	80%	77% vs 82%	0.80
	477	80% training	76%	76%	74% vs 78%	0.77
	832	10% validation	73%	72%	67% vs 77%	0.73
	50	10% testing	74%	74%	73% vs 75%	0.74
_	532		79%	79%	80% vs 76%	0.78
Frozen	987	80% training 10% validation 10% testing	71%	70%	74% vs 67%	0.71
	270		70%	70%	75% vs 64%	0.69
	431		74%	73%	76% vs 70%	0.74

Appendix 4 - Task 2a: Protest Event Issue (ethnic /religious minorities vs others)

Binary classification to identify articles explicitly discussing ethnic /religious minorities.

Labels distribution:

- Non-ethnic/religious issue: 1,010 texts
- Ethnic/religious issue): 903 texts

Speed [using top classifier]: 287 texts coded in 1min57sec (2.44it/s)

Model	Seed	Split	Accuracy	Average F-score	Individual F-scores	AUC
	129	60% training 20% validation 20% testing	69%	69%	70% vs 67%	0.69
	624		71%	70%	63% vs 76%	0.69
	917		70%	69%	72% vs 68%	0.71
	516	70% training	75%	75%	72% vs 77%	0.75
	387	15% validation	72%	72%	63% vs 78%	0.70
IUDLINIA	789	15% testing	69%	68%	61% vs 74%	0.68
	122	80% training	70%	70%	68% vs 71%	0.70
	8	10% validation 10% testing	74%	74%	68% vs 79%	0.73
	804		68%	67%	60% vs 73%	0.66
	28	60% training 20% validation 20% testing	67%	67%	66% vs 67%	0.67
	661		70%	70%	67% vs 73%	0.70
	499		67%	66%	60% vs 72%	0.67
	714	70% training 15% validation 15% testing	71%	71%	68% vs 73%	0.71
mBERT	564		70%	70%	65% vs 74%	0.70
	135		67%	67%	66% vs 68%	0.67
	75	80% training	73%	73%	75% vs 72%	0.73
	327	10% validation 10% testing	74%	74%	71% v 77%	0.74
	613		69%	68%	61% vs 74%	0.67
Frozen	907	70% training 15% validation	61%	54%	30% vs 73%	0.57
XLM	752		56%	46%	22% vs 69%	0.55
roBERTa	623	15% testing	53%	36%	00% vs 69%	0.50

Appendix 5 - Task 2b: Demonstrative vs Violent

Binary classification to identify articles explicitly discussing demonstrative vs violent

Labels distribution:

- Demonstrative: 1,126 texts
- Violent: 785 texts

Speed [using top classifier]: 287 texts coded in 1min48sec (2.64it/s)

> Return to results

Model	Seed	Split	Accuracy	Average F-score	Individual F-scores	AUC
	718	60% training 20% validation 20% testing	64%	65%	67% vs 62%	0.66
	65		73%	72%	79% vs 62%	0.70
	541		68%	68%	71% vs 64%	0.68
	374	70% training	66%	66%	68% vs 64%	0.67
XLM roBERTa	129	15% validation	70%	69%	76% vs 60%	0.68
	973	15% testing	75%	75%	78% vs 71%	0.77
	386	80% training	68%	69%	72% vs 63%	0.69
	650	10% validation 10% testing	75%	74%	81% vs 64%	0.72
	812		69%	69%	76% vs 57%	0.66
	826	60% training 20% validation 20% testing	73%	72%	79% vs 62%	0.70
	901		70%	70%	75% vs 64%	0.70
	541		69%	68%	75% vs 60%	0.67
	553	70% training 15% validation 15% testing	61%	62%	65% vs 57%	0.62
mBERT	471		60%	60%	62% vs 56%	0.62
	270		68%	68%	69% vs 68%	0.70
	747	80% training	69%	70%	74% vs 63%	0.70
	75	10% validation 10% testing	66%	66%	71% vs 59%	0.65
	457		70%	70%	77% vs 60%	0.68
Frozen	626	70% training 15% validation 15% testing	59%	44%	74% vs 00%	0.50
XLM	358		59%	44%	74% vs 00%	0.50
roBERTa	191		55%	39%	71% vs 00%	0.50